VERTEX-BLOCK ZAGREB INDICES OF GRAPHS

ANUSHA L., SAYINATH UDUPA N. V.*, AND PRATHVIRAJ N.

In the memory of Prof. Chandrashekar Adiga, University of Mysore, India.

ABSTRACT. A topological index is a graph invariant applicable in chemistry. The first and second Zagreb indices are topological indices based on the vertex degrees of molecular graphs. For any graph G, the first Zagreb index $M_1(G)$ is equal to the sum of squares of the degrees of vertices, and the second Zagreb index $M_2(G)$ is equal to the sum of the products of the degrees of pairs of adjacent vertices. A block is a maximal connected graph with no cut-vertices. The vertex-block degree (vb-degree) of a vertex is the number of blocks incident on it. In this paper, we define two new graph invariants, named as the first and second vertex-block Zagreb indices and obtain lower and upper bounds on them in terms of number of vertices, number of blocks and maximum vb-degree of a graph.

2010 Mathematics Subject Classification. 05C07, 05C09, 05C69, 05C92.

KEYWORDS AND PHRASES. Zagreb indices, vb-degree, vertex-block Zagreb indices.

1. Introduction

By a graph G=(V,E) we mean a finite, undirected and simple graph of order |V|=p and size |E|=q, where V and E respectively denote the vertex set and the edge set of G. The terminologies and notations used here are as in [11, 20]. The first and second Zagreb indices are topological indices based on vertex degrees of molecular graphs. The first Zagreb index $M_1(G)$ and the second Zagreb index $M_2(G)$ of G are defined as follows: $M_1(G) = \sum_{u \in V} d(u)^2$ and $M_2(G) = \sum_{uv \in E} d(u)d(v)$. I. Gutman and N. Trinajstić introduced $M_1(G)$ in 1972 [10], whereas $M_2(G)$ was introduced by I. Gutman et al. in 1975 [9]. These indices reflect the extent of branching of the molecular carbon-atom skeleton, and can thus be viewed as molecular structure-descriptors [1, 19]. The main properties of Zagreb indices were summarized in [8, 15]. Also, numerous bounds for $M_1(G)$ and $M_2(G)$ were obtained in [5, 6, 7].

A vertex $v \in V$ is a cut-vertex of a graph G if its removal from G increases the number of components of G. A block is a maximal connected subgraph of G that has no cut-vertices. A block is called a pendant block if it is incident on a single cut-vertex, otherwise it is called a non-pendant block. Let B be a block of a graph G. Then G-B denotes the graph obtained by removing all the edges and non-cut-vertices of B from G. In 2013, P. G. Bhat et al. [2] defined the vertex-block degree (vb-degree) of a vertex. If a block B contains a vertex v then we say that B and v incident to each other. The vb-degree of a vertex v denoted by $d_{vb}(v)$ is the number of blocks incident on v. We denote minimum and maximum vb-degree of vertices of G by $\delta_{vb} = \delta_{vb}(G)$ and $\Delta_{vb} = \Delta_{vb}(G)$, respectively. Note that $\delta_{vb}(G) = 1$, for

Submitted on 28 January 2023.

^{*} Corresponding author.

every graph G. The second maximum vb-degree of G is written as $\Delta_{vb_2} = \Delta_{vb_2}(G)$. Surekha [18] proved that, for any connected graph G, $\sum_{u \in V} d_{vb}(u) = p + m - 1$, where p is the order of G and m is the number of blocks in G.

Let $\mathcal{B}(G)$ and $V_c(G)$ denote the set of all blocks and set of all cut-vertices of a graph G, respectively. We denote $|\mathcal{B}(G)| = m$ and $|V_c(G)| = c$. A block-graph $\mathcal{B}_G(G)$ is a graph with vertex set $\mathcal{B}(G)$ and any two vertices in $\mathcal{B}_G(G)$ are adjacent if and only if the corresponding blocks are adjacent in G. A block-walk is a sequence of blocks and cut-vertices, say $B_1, u_1, B_2, u_2, \ldots, B_{m-1}, u_{m-1}, B_m$, beginning and ending with blocks in which each cut-vertex u_i is incident with the blocks B_i and B_{i+1} , $1 \leq i \leq m-1$. A block-walk in which all the cut-vertices are distinct is a block-path. A block-path with m blocks and m-1 cut-vertices is denoted as B_{P_m} . Two blocks are said to be adjacent if there is a common cut-vertex incident on them. A block-complete graph denoted by B_{K_m} is a connected graph with m blocks in which every pair of blocks is adjacent. A connected graph G is called as a block-star B_{m_1,m_2,\ldots,m_c} if there exists a block B in G with C cut-vertices such that C cut-vertex is incident with C cut-vertex is incident.

2. Vertex-Block Zagreb Indices of Graphs

We now define two new graph invariants called as the first and second vertexblock Zagreb indices. Let G = (V, E) be a graph. We denote a block $B \in \mathcal{B}(G)$ consisting vertices u_1, u_2, \ldots, u_k by $B = u_1 u_2 \ldots u_k$.

Definition 2.1. The first and second vertex-block Zagreb indices denoted by $VBM_1(G)$ and $VBM_2(G)$, respectively are defined as follows:

$$VBM_1(G) = \sum_{u \in V} d_{vb}(u)^2$$
 and
$$VBM_2(G) = \sum_{u_1 u_2 \dots u_k \in \mathcal{B}(G)} [d_{vb}(u_1) d_{vb}(u_2) \dots d_{vb}(u_k)].$$

2.1. Preliminary results.

Proposition 2.1. (i) For any block G, $VBM_1(G) = p$ and $VBM_2(G) = 1$.

- (ii) For any block-path B_{P_m} with m > 1, $VBM_1(B_{P_m}) = p + 3(m-1)$ and $VBM_2(B_{P_m}) = 4(m-1)$.
- (iii) For any block-complete graph B_{K_m} , $VBM_1(B_{K_m}) = p + m^2 1$ and $VBM_2(B_{K_m}) = m^2$.
- (iv) For any block-star $G = B_{m_1,m_2,...,m_c}$, $VBM_1(G) = p + \sum_{i=1}^{c} [m_i(m_i+2)]$ and $VBM_2(G) = \sum_{i=1}^{c} m_i(m_i+1) + \prod_{i=1}^{c} (m_i+1)$.

Proof. (ii) Let $G = B_{P_m}$ be a block-path with m > 1. Then

$$VBM_1(G) = \sum_{u \in V_c(G)} d_{vb}(u)^2 + \sum_{u \notin V_c(G)} d_{vb}(u)^2$$

$$= \sum_{u \in V_c(G)} 2^2 + \sum_{u \notin V_c(G)} 1^2$$

$$= 4c + (p - c)$$

$$= 4(m - 1) + p - (m - 1)$$

$$= p + 3(m - 1).$$

Since G has exactly 2 pendant blocks and m-2 non-pendant blocks, we obtain the following,

$$VBM_2(G) = \sum_{u_1u_2...u_k \in \mathcal{B}(G)} [d_{vb}(u_1)d_{vb}(u_2)...d_{vb}(u_k)]$$

= 2 + 2 + 4(m - 2)
= 4(m - 1).

(iii) Let $G = B_{K_m}$ be a block-complete graph. Then G has a unique cut-vertex, say u_c with $d_{vb}(u_c) = m$. Now,

$$VBM_{1}(G) = \sum_{\substack{u \in V(G) \\ u \neq u_{c}}} d_{vb}(u)^{2} + d_{vb}(u_{c})^{2}$$
$$= \sum_{\substack{u \in V(G) \\ u \neq u_{c}}} 1^{2} + m^{2}$$
$$= p + m^{2} - 1.$$

Further,

$$VBM_2(G) = \sum_{u_1u_2...u_k \in \mathcal{B}(G)} [d_{vb}(u_1)d_{vb}(u_2)...d_{vb}(u_k)]$$
$$= \sum_{u_1u_2...u_k \in \mathcal{B}(G)} m$$
$$= m^2$$

(iv) Consider a block-star $G = B_{m_1,m_2,...,m_c}$, then G has c cut-vertices and there exists a block $B = v_1v_2...v_k$ in G with c cut-vertices such that i^{th} cut-vertex is

incident with $m_i + 1$ blocks, where $m_i \in \mathbb{N}$ and $1 \leq i \leq c$. Now,

$$VBM_1(G) = \sum_{u \in V_c(G)} d_{vb}(u)^2 + \sum_{u \notin V_c(G)} d_{vb}(u)^2$$
$$= \sum_{i=1}^c (m_i + 1)^2 + (p - c)$$
$$= p + \sum_{i=1}^c [m_i(m_i + 2)].$$

We have i^{th} cut-vertex of G incident with m_i pendant-blocks, and the product of vb-degrees of vertices of any pendant-block incident with i^{th} cut-vertex is equal to $m_i + 1$. Hence, we obtain

$$VBM_{2}(G) = d_{vb}(v_{1})d_{vb}(v_{2})\dots d_{vb}(v_{k}) + \sum_{\substack{u_{1}u_{2}\dots u_{l} \in \mathcal{B}(G) \\ u_{1}u_{2}\dots u_{l} \neq B}} [d_{vb}(u_{1})d_{vb}(u_{2})\dots d_{vb}(u_{l})]$$

$$= \prod_{i=1}^{c} (m_{i}+1) + \sum_{i=1}^{c} m_{i}(m_{i}+1).$$

Remark 2.1. (i) For any graph G, $VBM_1(G) \leq M_1(G)$ and $VBM_2(G) \leq M_2(G)$. (ii) If G is an acyclic graph, then $VBM_1(G) = M_1(G)$ and $VBM_2(G) = M_2(G)$.

Proposition 2.2. [18] Let G be a connected graph and q_b denotes the number of edges in the block graph $\mathcal{B}_G(G)$. Then, $2q_b = \sum_{u \in V_c(G)} d_{vb}(u)^2 - (m+c-1)$.

Theorem 2.1. For a connected graph G, $VBM_1(G) = 2q_b + (p+m-1)$.

Proof. We have,

(1)
$$VBM_1(G) = \sum_{u \in V} d_{vb}(u)^2 = \sum_{u \in V_c(G)} d_{vb}(u)^2 + \sum_{u \notin V_c(G)} d_{vb}(u)^2.$$

Using Proposition 2.2 in (1), we get

$$VBM_1(G) = 2q_b + (m+c-1) + \sum_{u \notin V_c(G)} 1^2$$
$$= 2q_b + (m+c-1) + (p-c)$$
$$= 2q_b + (p+m-1).$$

Remark 2.2. The first and second vertex-block Zagreb indices $VBM_1(G)$ and $VBM_2(G)$ are incomparable for general graphs. For example, consider the graphs G_1 and G_2 as given in the Figure 1. Note that, $VBM_1(G_1) < VBM_2(G_1)$, whereas $VBM_1(G_2) > VBM_2(G_2)$.

FIGURE 1. Graphs G_1 and G_2

3. Lower and upper bounds on $VBM_1(G)$

In this section, we present some bounds on first vertex-block Zagreb index $VBM_1(G)$ in terms of p, m, Δ_{vb} and Δ_{vb_2} .

Theorem 3.1. For any connected graph G, $\frac{(p+m-1)^2}{p} \leq VBM_1(G) \leq p\Delta_{vb}^2$. Further, equality holds if and only if G is a block.

Proof. Let u_1, u_2, \ldots, u_p be the vertices of G. By Cauchy-Schwarz inequality, we have

$$\frac{1}{p} \left(\sum_{i=1}^{p} d_{vb}(u_i) \right)^2 \le \sum_{i=1}^{p} d_{vb}(u_i)^2.$$

Therefore,

$$\frac{(p+m-1)^2}{p} \le VBM_1(G).$$

Now,

$$VBM_1(G) = \sum_{i=1}^{p} d_{vb}(u_i)^2 \le \sum_{i=1}^{p} \Delta_{vb}^2 = p\Delta_{vb}^2.$$

Thus, both the lower and upper bounds follows. Further, suppose $\frac{(p+m-1)^2}{p} = VBM_1(G)$. Then $d_{vb}(u_i) = d_{vb}(u_j)$, for all $i, j, 1 \leq i, j \leq p$. This implies that, $d_{vb}(u_i) = 1$, for all $i, 1 \leq i \leq p$. Therefore, G has no cut-vertices. Since G is connected, G must be a block. Also, if $VBM_1(G) = p\Delta_{vb}^2$, then $d_{vb}(u_i) = \Delta_{vb}$, for all $i, 1 \leq i \leq p$. This implies that, $d_{vb}(u_i) = 1$, for all $i, 1 \leq i \leq p$. Thus, G is a block. Conversely, if G is a block, we have m = 1, $\Delta_{vb} = 1$ and $VBM_1(G) = p$. Thus, equality holds.

Corollary 3.1. [13] For a tree T with p vertices and e edges, $M_1(T) \ge \frac{4e^2}{p}$.

Theorem 3.2. Let G = (V, E) be a connected graph. Then $VBM_1(G) \leq p + (m - 1)[\Delta_{vb} + 1]$. Further, equality holds if and only if for any $u \in V$, either $d_{vb}(u) = \Delta_{vb}$ or $d_{vb}(u) = 1$.

Proof. Let u_1, u_2, \ldots, u_p be the vertices of G. We have

$$VBM_1(G) = \sum_{i=1}^p d_{vb}(u_i)^2$$

$$= \sum_{i=1}^p [d_{vb}(u_i)(d_{vb}(u_i) - 1) + d_{vb}(u_i)]$$

$$\leq \sum_{i=1}^p [\Delta_{vb}(d_{vb}(u_i) - 1) + d_{vb}(u_i)]$$

$$= p + (m-1)[\Delta_{vb} + 1].$$

Further, equality holds if and only if

$$\sum_{i=1}^{p} (\Delta_{vb} - d_{vb}(u_i))(d_{vb}(u_i) - 1) = 0$$

Note that each term of the above summation is non-negative. Hence, equality holds if and only if for any $u \in V$, either $d_{vb}(u) = \Delta_{vb}$ or $d_{vb}(u) = 1$.

(i) (Pólya-Szegő inequality) [17] Let $a = (a_1, a_2, \ldots, a_n)$ and b =(b) (1 eight based inequality) [11] Let $u = (a_1, a_2, ..., a_n)$ that $v = (b_1, b_2, ..., b_n)$ be two n-tuples of positive numbers. If $0 < \gamma \le a_i \le A < \infty$ and $0 < \beta \le b_i \le B < \infty$ for each $i, 1 \le i \le n$, then $\sum_{i=1}^n a_i^2 \sum_{j=1}^n b_j^2 \le a_j \le a_j$

$$\frac{(\gamma\beta + AB)^2}{4\gamma\beta AB} \left(\sum_{i=1}^n a_i b_i\right)^2.$$

(ii) (Ozeki's inequality) [16] If $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ are two n-tuples of real numbers satisfying $0 \le m_1 \le a_i \le M_1$ and $0 \le m_2 \le b_i \le M_2$ for every $i, 1 \le i \le n$, then $\sum_{i=1}^{n} a_i^2 \sum_{j=1}^{n} b_j^2 - \left(\sum_{j=1}^{n} a_i b_i\right)^2 \le \frac{n^2}{4} (M_1 M_2 - m_1 m_2)^2$.

Theorem 3.3. Let G be a connected graph. Then,

- (i) $VBM_1(G) \le \frac{(1+\Delta_{vb})^2}{4p\Delta_{vb}}(p+m-1)^2$ (ii) $VBM_1(G) \le \frac{(p+m-1)^2}{p} + \frac{p}{4}(\Delta_{vb}-1)^2$.

Further, the equality holds in (i) and (ii) if G is a block.

Proof. Let u_1, u_2, \ldots, u_p be the vertices of G.

(i) We take $a_i = d_{vb}(u_i)$, $b_i = 1$, for every $i, 1 \le i \le p, \gamma = 1, \beta = 1, A = \Delta_{vb}$ and B=1 in the Polya-Szego inequality. Then,

$$\sum_{i=1}^{p} d_{vb}(u_i)^2 \sum_{j=1}^{p} 1^2 \le \frac{(1+\Delta_{vb})^2}{4\Delta_{vb}} \left(\sum_{i=1}^{p} d_{vb}(u_i)\right)^2.$$

This implies that.

$$VBM_1(G)p \le \frac{(1+\Delta_{vb})^2}{4\Delta_{vb}}(p+m-1)^2.$$

Thus, the inequality (i) follows.

(ii) We take $a_i = d_{vb}(u_i)$, $b_i = 1$, for every $i, 1 \le i \le p$, $m_1 = m_2 = M_2 = 1$ and

 $M_1 = \Delta_{vb}$ in the Ozeki's inequality. Then,

$$\sum_{i=1}^{p} d_{vb}(u_i)^2 \sum_{i=1}^{p} 1^2 - \left(\sum_{i=1}^{p} a_i\right)^2 \le \frac{p^2}{4} (\Delta_{vb} - 1)^2.$$

This implies that,

$$VBM_1(G)p - (p+m-1)^2 \le \frac{p^2}{4}(\Delta_{vb} - 1)^2.$$

Thus,

$$VBM_1(G) \le \frac{(p+m-1)^2}{p} + \frac{p}{4}(\Delta_{vb} - 1)^2.$$

Further, the equality holds in (i) and (ii) if G is a block.

Remark 3.1. We recall the following facts: Let f be a real valued function defined on an interval I. Then f is strictly convex on I if and only if f'' exists and f''(x) > 0, for every $x \in I$. For any positive integer n and strictly convex function f, by Jensen's inequality, we have $f(\sum_{i=1}^{n} \frac{x_i}{n}) \leq \frac{1}{n} \sum_{i=1}^{n} f(x_i)$ and equality holds if and only if $x_1 = x_2 = \cdots = x_k$. Further, if -f is strictly convex, then the above inequality is reversed.

Theorem 3.4. For any graph G, $VBM_1(G) \ge p \left(\prod_{u \in V} d_{vb}(u)\right)^{\frac{2}{p}}$. Further, equality holds if and only if G is either a block or a union of blocks.

Proof. Consider the function f(x) = log(x) on the interval $I = (0, \infty)$. Then -f(x) is a convex function on I. By Jensen's inequality, we have

$$\log \left(\sum_{u \in V} \frac{d_{vb}(u)^2}{p} \right) \ge \frac{1}{p} \sum_{u \in V} \log \left(d_{vb}(u)^2 \right)$$
$$= \log \left(\prod_{u \in V} d_{vb}(u) \right)^{\frac{2}{p}}.$$

This implies that,

$$VBM_1(G) \ge p(\prod_{u \in V} d_{vb}(u))^{\frac{2}{p}}.$$

By Jensen's inequality, equality holds if and only if each vertex of G has the same vb-degree if and only if $d_{vb}(u) = 1$, for every $u \in V$ if and only if G is either a block or a union of blocks.

Lemma 3.2. [3, 12] Suppose $a=(a_1,a_2,\ldots,a_n)$ and $b=(b_1,b_2,\ldots,b_n)$ are n-tuples of real numbers, then $\left|n\sum_{i=1}^n a_ib_i-\sum_{i=1}^n a_i\sum_{i=1}^n b_i\right| \leq \alpha(n)(A-a)(B-b)$ where a,b,A and B are real constants such that $a\leq a_i\leq A$ and $b\leq b_i\leq B$, for each $i,1\leq i\leq n$ and, $\alpha(n)=n\lceil \frac{n}{2}\rceil\left(1-\frac{1}{n}\lceil \frac{n}{2}\rceil\right)$. Equality holds if and only if $a_1=a_2=\cdots=a_n$ and $b_1=b_2=\cdots=b_n$.

Theorem 3.5. Let G be a connected graph. Then, $VBM_1(G) \leq \frac{\alpha(p)(\Delta_{vb}-1)^2+(p+m-1)^2}{p}$. Further, equality holds if and only if G is a block.

Proof. Let u_1, u_2, \ldots, u_p be the vertices of G. We choose $a_i = b_i = d_{vb}(u_i)$, for every $i, 1 \le i \le p$, $A = B = \Delta_{vb}$ and a = b = 1, in Lemma 3.2, then

$$p\sum_{i=1}^{p} d_{vb}(u_i)^2 - \left(\sum_{i=1}^{p} d_{vb}(u_i)\right)^2 \le \alpha(p)(\Delta_{vb} - 1)^2,$$

that is,

$$pVBM_1(G) - (p+m-1)^2 \le \alpha(p)(\Delta_{vb} - 1)^2$$
.

Thus,

$$VBM_1(G) \le \frac{\alpha(p)(\Delta_{vb} - 1)^2 + (p + m - 1)^2}{p}.$$

Further, by the Lemma 3.2, equality of the theorem holds if and only if vb-degrees of all vertices of G are equal if and only if G is a block.

Lemma 3.3. [14] Let $a = (a_1, a_2, ..., a_n)$ and $b = (b_1, b_2, ..., b_n)$ be two n-tuples of real numbers. Then $\sum_{i=1}^{n} a_i^2 \sum_{j=1}^{n} b_j^2 - \left(\sum_{i=1}^{n} a_i b_i\right)^2 = \sum_{1 \le i < j \le n} (a_i b_j - a_j b_i)^2$.

Theorem 3.6. Let G be a connected graph with p > 2 vertices. Then, $VBM_1(G) \ge \Delta_{vb}^2 + \frac{(p+m-\Delta_{vb}-1)^2}{p-1} + \frac{2(p-2)}{(p-1)^2}(\Delta_{vb_2}-1)^2$. Further, equality holds if and only if G is either a block or block-complete graph.

Proof. Let u_1, u_2, \ldots, u_p be vertices of G such that $d_{vb}(u_1) \geq d_{vb}(u_2) \geq \cdots \geq d_{vb}(u_p)$. We take n = p - 1, $a_i = d_{vb}(u_{i+1})$ and $b_i = 1$, for every $i, 1 \leq i \leq n$ in Lemma 3.3. Then we get,

$$\sum_{i=2}^{p} d_{vb}(u_i)^2 \sum_{j=2}^{p} 1^2 - \left(\sum_{i=2}^{p} d_{vb}(u_i)\right)^2 = \sum_{2 \le i < j \le p} \left(d_{vb}(u_i) - d_{vb}(u_j)\right)^2.$$

This implies that,

(2)
$$(p-1) \left[VBM_1(G) - \Delta_{vb}^2 \right] - (p+m-1-\Delta_{vb})^2 = \sum_{2 \le i < j \le p} (d_{vb}(u_i) - d_{vb}(u_j))^2.$$

Consider,

$$\sum_{2 \le i < j \le p} |d_{vb}(u_i) - d_{vb}(u_j)| = (p-2)d_{vb}(u_2) - \sum_{i=3}^p d_{vb}(u_i)$$

$$+ \sum_{3 \le i < j \le p-1} |d_{vb}(u_i) - d_{vb}(u_j)|$$

$$+ \sum_{i=3}^{p-1} d_{vb}(u_i) - (p-3)d_{vb}(u_p)$$

$$= (p-2)[d_{vb}(u_2) - d_{vb}(u_p)] +$$

$$\sum_{3 \le i < j \le p-1} |d_{vb}(u_i) - d_{vb}(u_j)|$$

$$\ge (p-2)[\Delta_{vb_2} - 1].$$

$$(3)$$

By power-mean inequality [4], we have

$$\left(\frac{\sum\limits_{2 \le i < j \le p} (d_{vb}(u_i) - d_{vb}(u_j))^2}{[(p-1)(p-2)]/2}\right)^{\frac{1}{2}} \ge \frac{\sum\limits_{2 \le i < j \le p} |d_{vb}(u_i) - d_{vb}(u_j)|}{[(p-1)(p-2)]/2}$$

with equality if and only if $|d_{vb}(u_i) - d_{vb}(u_j)| = |d_{vb}(u_l) - d_{vb}(u_k)|$, for every $2 \le i, j, l, k \le p$. Then,

$$(4) \quad \sum_{2 \le i < j \le p} (d_{vb}(u_i) - d_{vb}(u_j))^2 \ge \frac{2}{(p-1)(p-2)} \left(\sum_{2 \le i < j \le p} |d_{vb}(u_i) - d_{vb}(u_j)| \right)^2$$

with equality if and only if $d_{vb}(u_2) = d_{vb}(u_3) = \cdots = d_{vb}(u_p)$. Now, from (3),

$$\sum_{2 \le i < j \le p} (d_{vb}(u_i) - d_{vb}(u_j))^2 \ge \frac{2}{(p-1)(p-2)} (p-2)^2 (\Delta_{vb_2} - 1)^2$$

$$= \frac{2(p-2)}{(p-1)} (\Delta_{vb_2} - 1)^2.$$

Using (2), from the above, we get

$$(p-1)\left[VBM_1(G) - \Delta_{vb}^2\right] \ge (p+m-1-\Delta_{vb})^2 + \frac{2(p-2)}{(p-1)}(\Delta_{vb_2}-1)^2.$$

Thus,

(5)
$$VBM_1(G) \ge \Delta_{vb}^2 + \frac{(p+m-\Delta_{vb}-1)^2}{p-1} + \frac{2(p-2)}{(p-1)^2}(\Delta_{vb_2}-1)^2.$$

Now, suppose that the equality holds in (5). Then the equality hold in (3) and (4). From the equality in (3) and (4), we get $d_{vb}(u_2) = d_{vb}(u_3) = \cdots = d_{vb}(u_p) = 1$. If $\Delta_{vb} = 1$, then G is a block. Otherwise, if $\Delta_{vb} > 1$, then G has exactly one cut-vertex. Hence, G is a block-complete graph. Conversely, if G is a block or block-complete graph, clearly the equality holds in (5).

Theorem 3.7. Let B_{P_m} and B_{K_m} be the block-path and block-complete graphs, respectively with p vertices and m blocks of same order. If G is a connected graph with p vertices and m blocks of same order, then $VBM_1(B_{P_m}) \leq VBM_1(G) \leq VBM_1(B_{K_m})$.

Proof. Let G be a connected graph with p vertices and m blocks of same order. We prove the result by induction on m. If m=1 or m=2, we have $VBM_1(B_{P_m})=VBM_1(G)=VBM_1(B_{K_m})$. When m=3, we have B_{P_3} and B_{K_3} are the only connected graphs with same number of vertices and 3 blocks of same order. This implies that, either $G=B_{P_3}$ or $G=B_{K_3}$. Further, we have $VBM_1(B_{P_3})=p+6 < p+8=VBM_1(B_{K_3})$. Hence, the result holds. If m=4, we have $VBM_1(B_{P_4})=p+9$ and $VBM_1(B_{K_4})=p+15$. Now, consider a connected graph G with p vertices and 4 blocks of same order, different from B_{P_4} and B_{K_4} . Then G has exactly 3 pendant blocks. Then we have the following two cases.

Case-i: If two pendant blocks of G are adjacent to each other. Then $VBM_1(G) = 3^2 + 2^2 + (p-2) = p+11$.

Case-ii: If no pendant blocks of G are adjacent with each other. Then $VBM_1(G) = 2^2 + 2^2 + 2^2 + (p-3) = p+9$.

In both cases, we have $VBM_1(B_{P_4}) \leq VBM_1(G) \leq VBM_1(B_{K_4})$.

Assume that m>4 and the result is true for m-1. Now, we prove the result for m. Let G be a connected graph with p vertices and m blocks of same order. Consider B_{P_m} and B_{K_m} with p vertices and m blocks of same order. Let $\{u_1,u_2,\ldots,u_p\}$, $\{v_1,v_2,\ldots,v_p\}$ and $\{w_1,w_2,\ldots,w_p\}$ be the set of all vertices of B_{P_m} , G and B_{K_m} , respectively. Let $\mathcal{B}(G)=\{B_1,B_2,\ldots,B_m\}$, $\mathcal{B}(B_{P_m})=\{B_1',B_2',\ldots,B_m'\}$ and $\mathcal{B}(B_{K_m})=\{B_1'',B_2'',\ldots,B_m''\}$. We take $|B_i|=|B_i'|=|B_i''|=k$, for every $i,1\leq i\leq m$. Without loss of generality, we assume that $B_1=\{v_1,v_2,\ldots,v_k\}$, $B_1'=\{u_1,u_2,\ldots,u_k\}$ and $B_1''=\{w_1,w_2,\ldots,w_k\}$ are pendant blocks of G, B_{P_m} and B_{K_m} , respectively such that v_k , u_k and w_k are cut-vertices. Now, by the induction assumption, we have $VBM_1(B_{P_m}-B_1')\leq VBM_1(G-B_1)\leq VBM_1(B_{K_m}-B_1'')$. Note that,

$$VBM_1(G - B_1) = (d_{vb}(v_k) - 1)^2 + \sum_{i=k+1}^{p} d_{vb}(u_i)^2.$$

This implies that,

$$VBM_1(G) = \sum_{i=1}^{p} d_{vb}(u_i)^2$$

= $(k-1) + VBM_1(G-B_1) + 2d_{vb}(v_k) - 1$.

Now,

$$VBM_{1}(B_{P_{m}}) = p + 3(m - 1)$$

$$= VBM_{1}(B_{P_{m}} - B'_{1}) + k + 2$$

$$\leq VBM_{1}(G - B_{1}) + k + 2$$

$$= VBM_{1}(G) + 4 - 2d_{vb}(v_{k})$$

$$\leq VBM_{1}(G)$$

and

$$VBM_1(G) = (k-1) + VBM_1(G - B_1) + 2d_{vb}(v_k) - 1$$

$$\leq (k-1) + VBM_1(B_{K_m} - B_1'') + 2d_{vb}(v_k) - 1$$

$$= (k-1) + (m-1)^2 + p - k + 2d_{vb}(v_k) - 1$$

$$= VBM_1(B_{K_m}) - 2m + 2d_{vb}(v_k)$$

$$\leq VBM_1(B_{K_m}) - 2m + 2m$$

$$= VBM_1(B_{K_m}).$$

Hence the result follows.

Corollary 3.2. [8] If T_n is an n-vertex tree, different from the star S_n and path P_n , then $M_1(P_n) \leq M_1(T_n) \leq M_1(S_n)$.

4. Lower and upper bound on $VBM_2(G)$

In this section, we give a lower and upper bound on second vertex-block Zagreb index $VBM_2(G)$ in terms of p, m and Δ_{vb} .

Lemma 4.1. [13] For positive real numbers x_1, x_2, \ldots, x_n the following inequality holds: $x_1log(x_1) + x_2log(x_2) + \cdots + x_nlog(x_n) \ge (x_1 + x_2 + \cdots + x_n)log\left(\frac{x_1 + x_2 + \cdots + x_n}{n}\right)$. Equality holds if and only if all x_i are equal.

Theorem 4.1. For any connected graph G, $m\left(\frac{p+m-1}{p}\right)^{\left(\frac{p+m-1}{m}\right)} \leq VBM_2(G) \leq m\Delta_{vb}^p$. Further, equality holds if and only if G is a block.

Proof. Let u_1, u_2, \ldots, u_p be the vertices of G. Consider,

$$\frac{VBM_2(G)}{m} = \frac{\sum_{u_1u_2...u_k \in \mathcal{B}(G)} [d_{vb}(u_1)d_{vb}(u_2)...d_{vb}(u_k)]}{m}.$$

By the arithmetic and geometric mean inequality, we have

$$\frac{VBM_2(G)}{m} \ge \sqrt[m]{\prod_{u_1u_2...u_k \in \mathcal{B}(G)} [d_{vb}(u_1)d_{vb}(u_2)...d_{vb}(u_k)]}$$

$$= \sqrt[m]{\prod_{i=1}^{p} d_{vb}(u_i)^{d_{vb}(u_i)}}.$$

Since $d_{vb}(u_i) \geq 1$, we take the logarithm of both sides to get

$$log\left(\frac{VBM_2(G)}{m}\right) \ge \frac{1}{m} \sum_{i=1}^{p} d_{vb}(u_i) log(d_{vb}(u_i)).$$

Now, by Lemma 4.1, we have

$$\log\left(\frac{VBM_2(G)}{m}\right) \ge \frac{1}{m} \sum_{i=1}^p d_{vb}(u_i) \log\left(\frac{\sum_{i=1}^p d_{vb}(u_i)}{p}\right)$$
$$= \frac{1}{m} (p+m-1) \log\left(\frac{p+m-1}{p}\right).$$

Hence.

(6)
$$VBM_2(G) \ge m \left(\frac{p+m-1}{p}\right)^{\left(\frac{p+m-1}{m}\right)}.$$

Thus, the lower bound follows.

By the property of arithmetic and geometric mean inequality and, by Lemma 4.1, equality holds in (6) if and only if $d_{vb}(u_1) = d_{vb}(u_2) = \cdots = d_{vb}(u_p)$ if and only if G is a block.

To prove the upper bound, consider

$$VBM_{2}(G) = \sum_{u_{1}u_{2}...u_{k} \in \mathcal{B}(G)} [d_{vb}(u_{1})d_{vb}(u_{2})...d_{vb}(u_{k})]$$

$$\leq \sum_{u_{1}u_{2}...u_{k} \in \mathcal{B}(G)} \Delta_{vb}^{k}$$

$$\leq m\Delta_{vb}^{p}.$$

Further, equality holds if and only if G is a block.

Corollary 4.1. [13] Let T be a tree with p vertices and m edges, then $M_2(T) \geq \frac{4m^3}{r^2}$.

References

- [1] A. T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983), 21–55.
- [2] P. G. Bhat, R. S. Bhat and S. R. Bhat, Relationship between Block Domination parameters of a graph, Discrete Math. Algorithms Appl. 5(3) (2013), 1–10.
- [3] M. Biernacki, H. Pidek and C. Ryll-Nardzewski, Sur une inegalité entre des intégrales définies, Univ. Marie Curie-Sklodowska A4 (1950), 1–4 (in French).
- [4] P. S. Bullen, D. S. Mitrinovic and M. Vasic, Means and their inequalities, Springer Science and Business Media, 2013.
- [5] B. Chaluvaraju, H. S. Boregowda and I. N. Cangul, Some inequalities for the first general Zagreb index of graphs and line graphs, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91(1) (2021), 79–88.
- [6] K. C. Das, K. Xu and J. Nam, Zagreb indices of graphs, Frontiers of Mathematics in China 10(3) (2015), 567–582.
- [7] G. H. Fath-Tabar, Old and New Zagreb Indices of Graphs, MATCH Commun. Math. Comput. Chem. 65 (2011), 79–84.
- [8] I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50(1) (2004), 83–92.
- [9] I. Gutman, B. Ruscic, N. Trinajstić and C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399–3405.
- [10] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.
- [11] F. Harary, Graph Theory, Addison Wesley, Reading, Massachusetts, 1969.

- [12] S. M. Hosamani and B. Basavanagoud, New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem. 74(1) (2015), 97–101.
- [13] A. Ilić, and D. Stevanović, On comparing Zagreb indices, arXiv preprint arXiv:1104.4262, (2011).
- [14] D. S. Mitrinovic and P. M. Vasic, Analytic inequalities, Vol. 1, Springer-verlag, Berlin, 1970.
- [15] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croatica chemica acta 76(2) (2003), 113–124.
- [16] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ. 5 (1968), 199–203.
- [17] G. Pólya and G. Szegö, *Inequalities for the capacity of a condenser*, American Journal of Mathematics 67(1) (1945), 1–32.
- [18] Surekha, A study of inverse, mixed block domination and related concepts in graphs, Manipal Academy of Higher Education, Manipal (Doctoral Thesis), 2013.
- [19] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [20] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, New Jersey, 1996.

DEPARTMENT OF MATHEMATICS, MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL ACADEMY OF HIGHER EDUCATION, MANIPAL-576 104, INDIA.

 $Email\ address: {\tt anusha.l@learner.manipal.edu}$

Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576 104, India.

Email address: sayinath.udupa@manipal.edu

Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal-576 104, India.

Email address: prathviraj.n@manipal.edu