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VERTEX-BLOCK ZAGREB INDICES OF GRAPHS
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ABSTRACT. A topological index is a graph invariant applicable in chemistry. The
first and second Zagreb indices are topological indices based on the vertex degrees
of molecular graphs. For any graph G, the first Zagreb index M;(G) is equal to
the sum of squares of the degrees of vertices, and the second Zagreb index M2 (G)
is equal to the sum of the products of the degrees of pairs of adjacent vertices.
A block is a maximal connected graph with no cut-vertices. The vertex-block
degree (vb-degree) of a vertex is the number of blocks incident on it. In this
paper, we define two new graph invariants, named as the first and second vertex-
block Zagreb indices and obtain lower and upper bounds on them in terms of
number of vertices, number of blocks and maximum vb-degree of a graph.
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1. INTRODUCTION

By a graph G = (V, E) we mean a finite, undirected and simple graph of order
|V | = p and size |E| = g, where V and F respectively denote the vertex set and the
edge set of G. The terminologies and notations used here are as in [11, 20]. The first
and second Zagreb indices are topological indices based on vertex degrees of molecu-
lar graphs. The first Zagreb index M;(G) and the second Zagreb index Ma(G) of G
are defined as follows: M1(G) = Y d(u)? and My(G) = Y d(u)d(v). I. Gutman

ueV uwekl
and N. Trinajsti¢ introduced M;(G) in 1972 [10], whereas M2(G) was introduced

by I. Gutman et al. in 1975 [9]. These indices reflect the extent of branching of
the molecular carbon-atom skeleton, and can thus be viewed as molecular structure-
descriptors [1, 19]. The main properties of Zagreb indices were summarized in [8, 15].
Also, numerous bounds for M;(G) and My(G) were obtained in [5, 6, 7).

A vertex v € V is a cut-vertex of a graph G if its removal from G increases the
number of components of G. A block is a maximal connected subgraph of G that
has no cut-vertices. A block is called a pendant block if it is incident on a single
cut-vertex, otherwise it is called a non-pendant block. Let B be a block of a graph
G. Then G — B denotes the graph obtained by removing all the edges and non-cut-
vertices of B from G. In 2013, P. G. Bhat et al. [2] defined the vertex-block degree
(vb-degree) of a vertex. If a block B contains a vertex v then we say that B and v
incident to each other. The vb-degree of a vertex v denoted by dy(v) is the number
of blocks incident on v. We denote minimum and maximum vb-degree of vertices
of G by 0y = 0up(G) and Ay, = Ayp(G), respectively. Note that §,,(G) = 1, for
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every graph G. The second maximum vb-degree of G is written as Ay, = Ay, (G).

Surekha [18] proved that, for any connected graph G, Y. dyp(u) = p+m—1, where
ueV
p is the order of G and m is the number of blocks in G.

Let B(G) and V.(G) denote the set of all blocks and set of all cut-vertices of
a graph G, respectively. We denote |B(G)| = m and |V;(G)| = c¢. A block-graph
Ba(G) is a graph with vertex set B(G) and any two vertices in Bg(G) are adjacent if
and only if the corresponding blocks are adjacent in G. A block-walk is a sequence
of blocks and cut-vertices, say Bi,u1, Ba,ug,..., Bm_1,Un_1, By, beginning and
ending with blocks in which each cut-vertex w; is incident with the blocks B; and
Bit1, 1 < i < m —1. A block-walk in which all the cut-vertices are distinct is
a block-path. A block-path with m blocks and m — 1 cut-vertices is denoted as
Bp, . Two blocks are said to be adjacent if there is a common cut-vertex incident
on them. A block-complete graph denoted by By, is a connected graph with m
blocks in which every pair of blocks is adjacent. A connected graph G is called as a
block-star By, ms,....m. if there exists a block B in G with ¢ cut-vertices such that
ith cut-vertex is incident with m; pendant blocks, where m; € Nand 1 < i < c.

2. VERTEX-BLOCK ZAGREB INDICES OF GRAPHS

We now define two new graph invariants called as the first and second vertex-
block Zagreb indices. Let G = (V, E) be a graph. We denote a block B € B(G)
consisting vertices uy, us,...,ur by B = ujus ... ug.

Definition 2.1. The first and second vertex-block Zagreb indices denoted by V BM1(G)
and VBM4(Q), respectively are defined as follows:

VBM:(G) = duy(u)® and

ueV

VBMQ(G) = Z [dvb(ul)dvb(UZ) S dvb(uk)}'
uiuz...u, €B(GQ)

2.1. Preliminary results.

Proposition 2.1. (i) For any block G, VBM1(G) =p and VBM(G) = 1.
(i) For any block-path Bp, with m > 1, VBM(Bp,) = p + 3(m — 1) and
VBMQ(Bpm) = 4(m - 1).
(iii) For any block-complete graph Br,,, V BM1(Bk,,) = p+m?—1 and V BM(Bk,,) =
m2.

.....

VBM(G) = émi(mi L)+ 1_011 (mi +1).
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Proof. (ii) Let G = Bp,, be a block-path with m > 1. Then

VBMi(G)= Y dup(w)®+ > dup(u)?

u€Ve(G) ugVe(G)
= ) 22+ > 1?
ueVe(G) ugVe(G)
=dc+(p—c)
= 4m—1)+p—(m—1)
=p+3(m—1).

Since G has exactly 2 pendant blocks and m — 2 non-pendant blocks, we obtain the
following,

VBM(G) = > [du(ur)du(uz) .. . dy(up)]
urusg...up €B(G)
=24+2+4(m—2)
=4(m —1).

(7i1) Let G = Bk, be a block-complete graph. Then G has a unique cut-vertex, say
ue with dyp(u.) = m. Now,

VBMi(G) = Y du(w)” + dup(ue)’

ueV(G)
UFU

> 2w
ueV(Q)
UFU

p+m?—1.

Further,

VBMQ(G) Z [dvb(ul)dvb(u2) R dvb(uk)]

uiuz...up €B(G)

= 2 m
ulug...ukeB(G)

= m2.

(tv) Consider a block-star G = By, ms,....m., then G has c cut-vertices and there
exists a block B = vjvs...v; in G with ¢ cut-vertices such that i*" cut-vertex is
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incident with m; + 1 blocks, where m; € N and 1 <17 < ¢. Now,

VBMi(G)= > dw)’+ Y du(u)’

ueVe(G) u¢Ve(G)

=D (mi+1)’+(p—c
i=1

=p+ Z[mi(mi +2)].

i=1

We have " cut-vertex of G incident with m; pendant-blocks, and the product of
vb-degrees of vertices of any pendant-block incident with " cut-vertex is equal to
m; + 1. Hence, we obtain

VBMQ(G) = dvb(vl)dvb(UQ) ce dvb(vk) + Z [dvb(u1)dub(u2) . dvb(ul)]

ULUY ...uZEB(G)
ujug..yy#B

:H(mi—b—l)—}—Zmi(mi—o—l).

O

Remark 2.1. (i) For any graph G, VBM1(G) < M (G) and VBM2(G) < Mz (G).
(i) If G is an acyclic graph, then VBM(G) = M1(G) and VBM3(G) = M2(G).

Proposition 2.2. [18] Let G be a connected graph and g, denotes the number of

edges in the block graph Bo(G). Then, 2q, = 3 dy(u)® — (m+ ¢ — 1).
ueVe(Q)

Theorem 2.1. For a connected graph G, VBM1(G) =2q, + (p + m — 1).
Proof. We have,

VBMy(G) = dy(u)?

(1) ueV , ,
= > dp@?+ D> dw(w).
ueVe(G) ugVe(G)

Using Proposition 2.2 in (1), we get
VBMi(G)=2g,+ (m+c—1)+ Y 17
ugVe(G)
=2¢+(m+c—1)+(p—c)
=2+ (p+m-—1).
O
Remark 2.2. The first and second vertex-block Zagreb indices V BM1(G) and VBM(G)
are incomparable for general graphs. For example, consider the graphs G1 and Gy as

given in the Figure 1. Note that, VBM1(G1) < VBM3(G1), whereas VBM1(G2) >
VBM(Ga).
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Graph G Graph G

Fi1GURE 1. Graphs G and Go

3. LOWER AND UPPER BOUNDS ON VBM;(G)

In this section, we present some bounds on first vertex-block Zagreb index VBM(G)
in terms of p, m, Ay and Agp,.

Theorem 3.1. For any connected graph G, W < VBM{(G) < pAw?. Fur-
ther, equality holds if and only if G is a block.

Proof. Let uy,us,...,u, be the vertices of G. By Cauchy-Schwarz inequality, we
have

p 2 p
1 2
—<zdvb<ui>) <3 )
P \ic i=1
Therefore,

(p+m—1) < VBM(G).

Now,
p p
VBM,(G) =Y du(uw)? <Y A =pAZ,
= i=1

Thus, both the lower and upper bounds follows. Further, suppose pm-1)* _

VBM1(G). Then dyp(u;) = dpp(uy), for all 4,5, 1 < 4,5 < p. This implies that,
dyp(u;) = 1, for all i, 1 < i < p. Therefore, G has no cut-vertices. Since G is
connected, G must be a block. Also, if VBMl(G) = pAy?, then dyy(u;) = Ay, for
all 4, 1 <4 < p. This implies that, dyy(u;) = 1, for all ¢, 1 < i < p. Thus, G is a
block. Conversely, if G is a block, we have m = 1, Ay, = 1 and VBM;(G) = p.
Thus, equality holds. O

Corollary 3.1. [13] For a tree T with p vertices and e edges, M1(T) > 4%2.
Theorem 3.2. Let G = (V, E) be a connected graph. Then VBM1(G) < p+ (m —

1)[Ayp+1]. Further, equality holds if and only if for any u € V, either dyp(u) = Ay
or dyp(u) = 1.
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Proof. Let uq,us, ..., uy, be the vertices of G.
We have

VBM(G) = du(u;)?

-

-
I
—

[dop(wi) (dop (i) — 1) 4 dyp ()]

I
AME

-
I
—

[Avp(dup(ui) — 1) + dyp(u;)]

-

~
I
—

=p+(m—1)[Ap+1].
Further, equality holds if and only if

> (A — dup () (dup(ur) — 1) = 0

i=1
Note that each term of the above summation is non-negative. Hence, equality holds
if and only if for any u € V, either dyp(u) = Ayp or dyp(u) = 1. O
Lemma 3.1. (i) (Pdlya-Szegé inequality) [17] Let a = (a1, aq,...,an) and b =

(b1,b2,...,b,) be two n-tuples of positive numbers. If 0 < = < a; <A< oo

and 0 < f < b < B < o0 for each i, 1 < i < n, thenZaz Zb2§
i=1 j=1
2
(18+AB)>
74%3/13 Za”

(i) (Ozeki’s mequalzty) [16] If a = (a1,a2,...,a,) and b= (by,ba,...,by) are two
n-tuples of real numbers satisfying 0 < my < a; < My and 0 < mg < b; < My
n n n 2
for everyi, 1 <i <n, then 2(11-2 Zl bj2— (Zl aibi) < %2 (MM, — m1m2)2.
= Jj= i=
Theorem 3.3. Let G be a connected graph. Then,

(i) VBM,(G) < %AT“;)?(H m—1)2

(ii) VBM1(G) < M +2(Ay— 1)
Further, the equality holds in (1) and (i) if G is a block.

Proof. Let uy,us, ..., u, be the vertices of G.

(1) We take a; = dyp(u;), by =1, forevery i, 1 <i<p,yv=1,8=1, A=A, and
B =1 in the Polya-Szego inequality.

Then,

p p 9 /D 2
;dvb(uz Z 1 ZAAZb) (Z dvb uz > .

i=1

This implies that,

(14 Ayw)?

<
VBM,(G)p e

(p+m—1)>%

Thus, the inequality (i) follows.
(i1) We take a; = dyp(us), by = 1, for every i, 1 < i < p, m; = mg = My = 1 and
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My = Ayp in the Ozeki’s inequality.
Then,

P P P 2
Zdvb(ui)2 do1r- (Z ai) < %(Avb - 1)%

This implies that,

2
VBM(G)p— (p+m—1)*< %(Avb —1)2

Thus,
—1)2
VBM,(G) < % a1
Further, the equality holds in (i) and (i¢) if G is a block. O

Remark 3.1. We recall the following facts: Let f be a real valued function defined on
an interval I. Then f is strictly convex on I if and only if f exists and f”( ) >0,
for every x € I. For any posztzve mteger n and strictly convexr function f, by

Jensen’s inequality, we have f(z L) < Z f(z;) and equality holds if and only if
=1 i=1

r1 = x9 = -+ = xi. Further, zf —f is stmctly convex, then the above inequality is
reversed.

2
Theorem 3.4. For any graph G, VBM(G) > p < 11 dvb(u)> " Further, equality
ueV
holds if and only if G is either a block or a union of blocks.

Proof. Consider the function f(z) = log(x) on the interval I = (0, 00). Then — f(z)
is a convex function on I. By Jensen’s inequality, we have

log (Z ) Zlog( e )

ueV uEV

= lOg (H dvb(u))

ueV

2

This implies that,

B N

VBM:(G) > p(H dyp(u))

ueV

By Jensen’s inequality, equality holds if and only if each vertex of G has the same
vb-degree if and only if dyp(u) = 1, for every u € V if and only if G is either a block
or a union of blocks. O

Lemma 3.2. [3, 12] Suppose a= (al7 a2,...,an) andb = (b1, by, ..., by) are n-tuples
of real numbers, then |n Z a;b; — Z a; Z b; ‘ < a(n)(A —a)(B —b) where a, b, A

=1 =1

and B are real constants such thata < a; < A and b <b; < B, foreachi, 1 <i<mn
and, o(n) = n[2] (1 - L[27). Equality holds if and only if a1 = a3 = -+ = a,, and
blzb2:~-~:bn.

541
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Theorem 3.5. Let G be a connected graph. Then, VBM1(G) < a(p)(A"b_l);+(p+m_1)2.
Further, equality holds if and only if G is a block.

Proof. Let ui, ua, ..., up be the vertices of G. We choose a; = b; = dyp(u;), for every
i,1<i<p, A=B=Ay and a = b =1, in Lemma 3.2, then

pZ dvb(ui)2 - (Z d’ub(ui)) < a(p)(Avb - 1)2:
that is,
pVBM:(G) — (p+m — 1)2 < a(p)(Aw — 1)2.
Thus,

alp) (A — 12+ (p+m — 1)2.

VBM,(G) < .

Further, by the Lemma 3.2, equality of the theorem holds if and only if vb-degrees
of all vertices of G are equal if and only if G is a block. g

Lemma 3.3. [14] Let a = (a1,a9,...,a,) and b= (b1, ba, ..., by) be two n-tuples of
n n n 2

real numbers. Then Y a;® 3 b;* — (Z aibi> = > (aibj —ab)*
i j i=1

i=1 j=1 1<i<j<n
Theorem 3.6. Let G be a connected graph with p > 2 vertices. Then, VBM;(G) >
A2 + OHm;f‘f”*l)Q + 2= (Ayp, — 1)2. Further, equality holds if and only if G is

(p—-1)?
either a block or block-complete graph.

Proof. Let ui,us,...,up be vertices of G such that dys(u1) > dyp(u2)
dyp(up). We take n = p — 1, a; = dyp(uip1) and b; = 1, for every 4, 1
in Lemma 3.3. Then we get,

IN IV
31V

D dw(ui)*y 17— (Z dvb(“i)) = D (du(w) = dup(uy))*.
i=2 j=2 i=2 2<i<j<p
This implies that,
(2) (p—1) [VBM1(G) = Ap*] —(p+m—1—-Ay)? =
Z (dop(ui) — dvb(uj))2 .

Consider,
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Z |dvb(u1) Ub(u])| - (p 2 vb(u2 Zdvb(uz

2<i<j<p

+ Z |dyp(us) — dvb(“j)‘
3<i<j<p 1

+ Z dop(u;) — (p — 3)dup(uy)

= (p — 2)[dyp(u2) — dyp(up)]+
Z |dup(ui) — dyp(uy)]

3<i<j<p—1

(3) > (p - 2)[Avbz - 1]'

By power-mean inequality [4], we have

S () — dp(@)?\ T X Idw(us) — dop(ug)]

2<i<j<p 2<i<j<p
[(p—1)(p—2)]/2 T -1 -2)/2
with equality if and only if |dyp(ui) — dup(uj)| = |dvs(ur) — dop(uk)], for every 2 <
i, 7,1k < p.
Then,
2
2
2
) . > ) .
(4) 2<§< (dvb(uz) dvb(uj)) = (p — 1)(p — 2) 2<Z< |dvb(uz) dvb(uj)|
<i<j<p <i<j<p
with equality if and only if dyp(u2) = dyp(ug) = -+ - = dyp(up).
Now, from (3),
2
Yo (dup(wi) = dup(u)))® = s (0 = 2)°(Ayp, — 1)
T (p—=1)p—2)
2(p—2) 2
= A - 1 .
CEDR
Using (2), from the above, we get
2 2
(p - 1) [VBMl(G) - Avbﬂ Z (p +m—-1- Aﬂb)2 ((;9 )) (Avbg - 1)2.
Thus,
s (phm—Ap—1?  2p—2) )

(5) VBMi(G) > Ap” + 1 (p— 172 (App, — 1)~
Now, suppose that the equality holds in (5). Then the equality hold in (3) and (4).
From the equality in (3) and (4), we get dyp(u2) = dpp(uz) = -+ = dpp(up) = 1. If

Ayp = 1, then G is a block. Otherwise, if A, > 1, then G has exactly one cut-vertex.
Hence, G is a block-complete graph. Conversely, if G is a block or block-complete
graph, clearly the equality holds in (5).
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Theorem 3.7. Let Bp,, and Bk, be the block-path and block-complete graphs, re-
spectively with p vertices and m blocks of same order. If G is a connected graph
with p vertices and m blocks of same order, then VBM{(Bp,) < VBM;(G) <
VBM,(Bxg,,)-

Proof. Let G be a connected graph with p vertices and m blocks of same or-
der. We prove the result by induction on m. If m = 1 or m = 2, we have
VBM,(Bp,,) = VBM;(G) = VBM(Bkg,,). When m = 3, we have Bp, and
By, are the only connected graphs with same number of vertices and 3 blocks of
same order. This implies that, either G = Bp, or G = Bpg,. Further, we have
VBM1(Bp,) =p+6 < p+8=VBM;(Bg,). Hence, the result holds. If m = 4, we
have VBM(Bp,) = p+ 9 and VBM;(Bg,) = p + 15. Now, consider a connected
graph G with p vertices and 4 blocks of same order, different from Bp, and Bg,.
Then G has exactly 3 pendant blocks. Then we have the following two cases.
Case-i: If two pendant blocks of G are adjacent to each other. Then VBM(G) =
324224+ (p—2)=p+ 11

Case-ii: If no pendant blocks of G are adjacent with each other. Then VBM;(G) =
22+224+224 (p—3)=p+9.

In both cases, we have VBM(Bp,) < VBM;(G) < VBM;(Bkg,).

Assume that m > 4 and the result is true for m — 1. Now, we prove the result for
m. Let G be a connected graph with p vertices and m blocks of same order. Con-
sider Bp,, and Bg,, with p vertices and m blocks of same order. Let {u1,u2, ..., up},
{v1,v2,...,vp} and {wy,ws, ..., wy} be the set of all vertices of Bp,,, G and B, , re-
spectively. Let B(G) = {Bi, Ba,...,Bm}, B(Bp,) = {B}, B},..., B}, } and B(Bg,,) =
{B{,BY,...,Bl}. We take |B;| = |B}| = |B}'| = k, for every 4, 1 < i < m. Without
loss of generality, we assume that By = {v1,v2,...,v;}, Bf = {u1,ug,...,u;} and
B{ = {w1,ws,...,w;} are pendant blocks of G, Bp,, and Bk,,, respectively such
that vk, ur and wyg are cut-vertices. Now, by the induction assumption, we have
VBM,(Bp, — B}) <VBM(G — By) < VBM,(Bg,, — BY).

Note that,

VBM (G — By) = (du(vk) = 1) + > dup(wi)?.
i=k+1

This implies that,

P
VBM:(G) = du(u:)?
=1

= (k—1)+VBM1(G — By) + 2dy(vy) — 1.
Now,
VBM1(Bp,,) =p+3(m—1)
=VBM(Bp, — B}) +k+2
<VBM(G—-B1)+k+2
=VBM/(G) + 4 — 2dy(v)
< VBM,(G)
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and
VBM:(G)=(k—1)+VBM(G — B1) + 2dy(vg) — 1
< (k—1) 4+ VBM(Bk,, — Bf) + 2dy(vg) — 1
=(k—1)+ (m—1)*+p—k+2dy(vi) — 1
= VBM,(Bg,,) — 2m + 2d(vy)
< VBMl(BKm) —2m +2m
=VBM,(Bk,,)-
Hence the result follows. O

Corollary 3.2. [8] If T, is an n-vertex tree, different from the star S, and path P,

4. LOWER AND UPPER BOUND ON VBM3(G)

In this section, we give a lower and upper bound on second vertex-block Zagreb
index VBM3(G) in terms of p, m and A.

Lemma 4.1. [13] For positive real numbers x1,xa,...,%, the following inequality
holds: x1log(x1)+x2log(x2)+- -+ xnlog(xy) > (x1+ @2+ - -+ap)log (LFE2botin),
Equality holds if and only if all x; are equal.

p+m—1)

Theorem 4.1. For any connected graph G, m (zﬁ%_l)( " < VBMs(G) <
mAP. Further, equality holds if and only if G is a block.

Proof. Let uy,us,...,u, be the vertices of G.
Consider,

Z [dvb(ul)dvb(u2) cee dvb(uk)]
VBMQ(G) _uiug..up€B(G)

m m

By the arithmetic and geometric mean inequality, we have

VBM(G) 10

m [dvb(ul)dvb(UQ) e dvb(uk)]

ULU... UL EB(G)

p

_m Hdvb(ui)dvb(ui)'

i=1

Since dyp(u;) > 1, we take the logarithm of both sides to get

log

(% ) > %Zdvb(ui)log(dub(uz‘»-

i=1
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Now, by Lemma 4.1, we have

p
> dup(us)
BM 1< -
log <V72(G)> > = Zdvb(ui)log =1
m m 4 p
=1
1 -1
=—(p+m—1)log <p+m) .
m
Hence,
bt m— 1y (25)
(6) VBM2(G) > m (p)

Thus, the lower bound follows.

By the property of arithmetic and geometric mean inequality and, by Lemma 4.1,
equality holds in (6) if and only if dyp(u1) = dyp(u2) = - - = dyp(up) if and only if G
is a block.

To prove the upper bound, consider

Z [dvb(U1)dvb(U2) e dvb(uk)]

uruz...up€B(G)

Z Avbk

uruz... up€B(G)
<mAgL.

Further, equality holds if and only if G is a block. g

VBM,(G)

IN

Corollary 4.1. [13] Let T be a tree with p vertices and m edges, then May(T) > 4[)123.
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